Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 470: 134104, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38569336

RESUMEN

Understanding radioactive Cs contamination has been a central issue at Fukushima Daiichi and other nuclear legacy sites; however, atomic-scale characterization of radioactive Cs in environmental samples has never been achieved. Here we report, for the first time, the direct imaging of radioactive Cs atoms using high-resolution high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). In Cs-rich microparticles collected from Japan, we document inclusions that contain 27 - 36 wt% of Cs (reported as Cs2O) in a zeolite: pollucite. The compositions of three pollucite inclusions are (Cs1.86K0.11Rb0.19Ba0.22)2.4(Fe0.85Zn0.84X0.31)2.0Si4.1O12, (Cs1.19K0.05Rb0.19Ba0.22)1.7(Fe0.66Zn0.32X0.41)1.4Si4.6O12, and (Cs1.27K0.21Rb0.29Ba0.15)1.9(Fe0.60Zn0.32X0.69)1.6Si4.4O12 (X includes other cations). HAADF-STEM imaging of pollucite, viewed along the [111] zone axis, revealed an array of Cs atoms, which is consistent with a simulated image using the multi-slice method. The occurrence of pollucite indicates that locally enriched Cs reacted with siliceous substances during the Fukushima meltdowns, presumably through volatilization and condensation. Beta radiation doses from the incorporated Cs are estimated to reach 106 - 107 Gy, which is more than three orders of magnitude less than typical amorphization dose of zeolite. The atomic-resolution imaging of radioactive Cs is an important advance for better understanding the fate of radioactive Cs inside and outside of nuclear reactors damaged by meltdown events.

2.
Chemosphere ; 328: 138566, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37011818

RESUMEN

Radioactive Cs-rich microparticles (CsMPs) released from the Fukushima Daiichi Nuclear Power Plant (FDNPP) are a potential health risk through inhalation. Little has been documented on the occurrence of CsMPs, particularly their occurrence inside buildings. In this study, we quantitatively analyze the distribution and number of CsMPs in indoor dust samples collected from an elementary school located 2.8 km to the southwest of FDNPP. The school had remained deserted until 2016. Then, using a modified version of the autoradiography-based "quantifying CsMPs (mQCP) method," we collected samples and determined the number of CsMPs and Cs radioactive fraction (RF) values of the microparticles (defined as total Cs activity from CsMPs/bulk Cs activity of the entire sample). The numbers of CsMPs ranged from 653 to 2570 particles/(g dust) and 296-1273 particles/(g dust) on the first and second floors of the school, respectively. The corresponding RFs ranged between 6.85 - 38.9% and 4.48-6.61%, respectively. The number of CsMPs and RF values in additional outdoor samples collected near the school building were 23-63 particles/(g dust or soil) and 1.14-1.61%, respectively. The CsMPs were most abundant on the school's first floor near to the entrance, and the relative abundance was higher near the stairs on the second floor, indicating a likely CsMP dispersion path through the building. Additional wetting of the indoor samples combined with autoradiography revealed that indoor dusts had a distinct absence of intrinsic, soluble Cs species, such as CsOH. These combined observations indicate that a significant amount of poorly soluble CsMPs were likely contained in initial radioactive airmass plumes from the FDNPP and that the microparticles penetrated buildings. CsMPs could still be abundant at the location, with locally high Cs activity in indoor environments near to openings.


Asunto(s)
Accidente Nuclear de Fukushima , Monitoreo de Radiación , Contaminantes Radiactivos del Agua , Radioisótopos de Cesio/análisis , Plantas de Energía Nuclear , Monitoreo de Radiación/métodos , Cesio , Polvo , Instituciones Académicas , Japón , Contaminantes Radiactivos del Agua/análisis
3.
J Hazard Mater ; 428: 128214, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35042164

RESUMEN

Boron carbide control rods remain in the fuel debris of the damaged reactors in the Fukushima Daiichi Nuclear Power Plant, potentially preventing re-criticality; however, the state and stability of the control rods remain unknown. Sensitive high-resolution ion microprobe analyses have revealed B-Li isotopic signatures in radioactive Cs-rich microparticles (CsMPs) that formed by volatilization and condensation of Si-oxides during the meltdowns. The CsMPs contain 1518-6733 mg kg-1 of 10+11B and 11.99-1213 mg kg-1 of 7Li. The 11B/10B (4.15-4.21) and 7Li/6Li (213-406) isotopic ratios are greater than natural abundances (~4.05 and ~12.5, respectively), indicating that 10B(n,α)7Li reactions occurred in B4C prior to the meltdowns. The total amount of B released with CsMPs was estimated to be 0.024-62 g, suggesting that essentially all B remains in reactor Units 2 and/or 3 and is enough to prevent re-criticality; however, the heterogeneous distribution of B needs to be considered during decommissioning.


Asunto(s)
Accidente Nuclear de Fukushima , Monitoreo de Radiación , Cesio , Radioisótopos de Cesio , Japón , Plantas de Energía Nuclear , Volatilización
4.
Sci Rep ; 11(1): 22059, 2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34764373

RESUMEN

The Quaternary Kurobegawa Granite, central Japan, is not only the youngest known granitic pluton exposed on the Earth's surface, it is one of few localities where both Quaternary volcanics and related plutons are well exposed. Here, we present new zircon U-Pb ages together with whole rock and mineral geochemical data, revealing that the Kurobegawa Granite is a resurgent pluton that was emplaced following the caldera-forming eruption of the Jiigatake Volcanics at 1.55 ± 0.09 Ma. Following the eruption, the remnant magma chamber progressively cooled forming the voluminous Kurobegawa pluton in the upper crust (~ 6 km depth) until ~ 0.7 Ma when resurgence caused rapid uplift and erosion in the region. This is the first study to document the detailed spatiotemporal evolution of resurgent pluton for a Quaternary caldera system. Our new findings may contribute significantly to understanding the fate of active caldera systems that can produce supereruptions.

5.
Sci Total Environ ; 773: 145639, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33940743

RESUMEN

A contaminated zone elongated toward Futaba Town, north-northwest of the Fukushima Daiichi Nuclear Power Plant (FDNPP), contains highly radioactive particles released from reactor Unit 1. There are uncertainties associated with the physio-chemical properties and environmental impacts of these particles. In this study, 31 radioactive particles were isolated from surface soils collected 3.9 km north-northwest of the FDNPP. Two of these particles have the highest particle-associated 134+137Cs activity ever reported for Fukushima (6.1 × 105 and 2.5 × 106 Bq per particle after decay-correction to March 2011). The new, highly-radioactive particle labeled FTB1 is an aggregate of flaky silicate nanoparticles with an amorphous structure containing ~0.8 wt% Cs, occasionally associated with SiO2 and TiO2 inclusions. FTB1 likely originates from the reactor building, which was damaged by a H2 explosion, after adsorbing volatilized Cs. The 134+137Cs activity in the other highly radioactive particle labeled FTB26 exceeded 106 Bq. FTB26 has a glassy carbon core and a surface that is embedded with numerous micro-particles: Pb-Sn alloy, fibrous Al-silicate, Ca-carbonate or hydroxide, and quartz. The isotopic signatures of the micro-particles indicate neutron capture by B, Cs volatilization, and adsorption of natural Ba. The composition of the micro-particles on FTB26 reflects the composition of airborne particles at the moment of the H2 explosion. Owing to their large size, the health effects of the highly radioactive particles are likely limited to external radiation during static contact with skin; the highly radioactive particles are thus expected to have negligible health impacts for humans. By investigating the mobility of the highly radioactive particles, we can better understand how the radiation dose transfers through environments impacted by Unit 1. The highly radioactive particles also provide insights into the atmospheric conditions at the time of the Unit 1 explosion and the physio-chemical phenomena that occurred during reactor meltdown.


Asunto(s)
Accidente Nuclear de Fukushima , Monitoreo de Radiación , Radiactividad , Humanos , Plantas de Energía Nuclear , Dióxido de Silicio
6.
Sci Rep ; 11(1): 1557, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33452319

RESUMEN

The phylum Annelida exhibits high morphological diversity coupled with its extensive ecological diversity, and the process of its evolution has been an attractive research subject for many researchers. Its representatives are also extensively studied in fields of ecology and developmental biology and important in many other biology related disciplines. The study of biomineralisation is one of them. Some annelid groups are well known to form calcified tubes but other forms of biomineralisation are also known. Herein, we report a new interstitial annelid species with black spicules, Thoracophelia minuta sp. nov., from Yoichi, Hokkaido, Japan. Spicules are minute calcium carbonate inclusions found across the body and in this new species, numerous black rod-like inclusions of calcium-rich composition are distributed in the coelomic cavity. The new species can be distinguished from other known species of the genus by these conspicuous spicules, shape of branchiae and body formula. Further, the new species' body size is apparently smaller than its congeners. Based on our molecular phylogenetic analysis using 18S and 28S sequences, we discuss the evolutionary significance of the new species' spicules and also the species' progenetic origin.


Asunto(s)
Anélidos/clasificación , Poliquetos/clasificación , Animales , Anélidos/metabolismo , Biomineralización/fisiología , Tamaño Corporal , Carbonato de Calcio/metabolismo , Japón , Filogenia , Poliquetos/metabolismo , Especificidad de la Especie
7.
Sci Total Environ ; 743: 140539, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32663681

RESUMEN

Traces of Pu have been detected in material released from the Fukushima Daiichi Nuclear Power Plant (FDNPP) in March of 2011; however, to date the physical and chemical form of the Pu have remained unknown. Here we report the discovery of particulate Pu associated with cesium-rich microparticles (CsMPs) that formed in and were released from the reactors during the FDNPP meltdowns. The Cs-pollucite-based CsMP contained discrete U(IV)O2 nanoparticles, <~10 nm, one of which is enriched in Pu adjacent to fragments of Zr-cladding. The isotope ratios, 235U/238U, 240Pu/239Pu, and 242Pu/239Pu, of the CsMPs were determined to be ~0.0193, ~0.347, and ~0.065, respectively, which are consistent with the calculated isotopic ratios of irradiated-fuel fragments. Thus, considering the regional distribution of CsMPs, the long-distance dispersion of Pu from FNDPP is attributed to the transport by CsMPs that have incorporated nanoscale fuel fragments prior to their dispersion up to 230 km away from the Fukushima Daiichi reactor site.


Asunto(s)
Accidente Nuclear de Fukushima , Plutonio/análisis , Monitoreo de Radiación , Radioisótopos de Cesio/análisis , Japón , Plantas de Energía Nuclear
8.
Chemosphere ; 241: 125019, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31610456

RESUMEN

The abundance and distribution of highly radioactive cesium-rich microparticles (CsMPs) that were released from the Fukushima Daiichi Nuclear Power Plant (FDNPP) during the first stage of the nuclear disaster in March 2011 are described for 20 surface soils collected around the FDNPP. Based on the spatial distribution of the numbers (particles/g) and radioactive fraction (RF) of the CsMPs in surface soil, which is defined as the sum of the CsMP radioactivity (in Bq) divided by the total radioactivity (in Bq) of the soil sample, three regions of particular interest have been identified: i.) near-northwest (N-NW), ii.) far-northwest (F-NW), and iii.) southwest (SW). In these areas, the number and RF of CsMPs were determined to be 22.1-101 particles/g and 15.4-34.0%, 24.3-64.8 particles/g and 36.7-37.4%, and 0.869-8.00 particles/g and 27.6-80.2%, respectively. These distributions are consistent with the plume trajectories of material released from the FDNPP on March 14, 2011, in the late afternoon through to the late afternoon of March 15, 2011, indicating that the CsMPs formed only during this short period. Unit 3 is the most plausible source of the CsMPs at the beginning of the release based on an analysis of the sequence of release events. The lower RF values in the N-NW region indicate a larger influence from subsequent plumes that mainly consisted of soluble Cs species formed simultaneously with precipitation. The quantitative map of the distribution of CsMPs provides an important understanding of CsMP dispersion dynamics and can be used to assess risks in inhabited regions.


Asunto(s)
Radioisótopos de Cesio/análisis , Accidente Nuclear de Fukushima , Plantas de Energía Nuclear , Material Particulado/análisis , Contaminantes Radiactivos/análisis , Japón , Tamaño de la Partícula , Monitoreo de Radiación , Radiactividad , Suelo/química
9.
Chemosphere ; 233: 633-644, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31195267

RESUMEN

To understand the chemical durability of highly radioactive cesium-rich microparticles (CsMPs) released from the Fukushima Daiichi Nuclear Power Plant in March 2011, we have, for the first time, performed systematic dissolution experiments with CsMPs isolated from Fukushima soils (one sample with 108 Bq and one sample with 57.8 Bq of 137Cs) using three types of solutions: simulated lung fluid, ultrapure water, and artificial sea water, at 25 and 37 °C for 1-63 days. The 137Cs was released rapidly within three days and then steady-state dissolution was achieved for each solution type. The steady-state 137Cs release rate at 25 °C was determined to be 4.7 × 103, 1.3 × 103, and 1. 3 × 103 Bq·m-2 s-1 for simulated lung fluid, ultrapure water, and artificial sea water, respectively. This indicates that the simulated lung fluid promotes the dissolution of CsMPs. The dissolution of CsMPs is similar to that of Si-based glass and is affected by the surface moisture conditions. In addition, the Cs release from the CsMPs is constrained by the rate-limiting dissolution of silicate matrix. Based on our results, CsMPs with ∼2 Bq, which can be potentially inhaled and deposited in the alveolar region, are completely dissolved after >35 years. Further, CsMPs could remain in the environment for several decades; as such, CsMPs are important factors contributing to the long-term impacts of radioactive Cs in the environment.


Asunto(s)
Radioisótopos de Cesio/análisis , Monitoreo de Radiación , Contaminantes Radiactivos del Agua/análisis , Cesio , Accidente Nuclear de Fukushima , Vidrio , Japón , Plantas de Energía Nuclear , Radiactividad , Agua de Mar , Silicatos , Suelo , Solubilidad , Agua
10.
Data Brief ; 19: 1537-1544, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30229026

RESUMEN

In this data article, we provide information on the recovery rate and scanning electron microscope (SEM) images of the external morphology of zircon grains separated from two rock samples (AS3 and TEMORA 2) using both mechanical and electrical pulverization systems. The data in this article are related to the research article entitled "New insight into disturbance of U-Pb and trace-element systems in hydrothermally altered zircon via SHRIMP analyses of zircon from the Duluth Gabbro" (Takehara et al., 2018) [1]. Zircons from these two rock samples are widely used as reference materials for U-Pb dating by micro-beam techniques. Rock samples with nearly equal weights were pulverized by both methods, and the recovered zircon grains were then concentrated using conventional mineral-separation methods. Weights of the products at each step in the mineral separation process were measured, and finally the recovery rates of the heavy and non-magnetic minerals, including zircon, were calculated.

11.
Sci Rep ; 7(1): 5409, 2017 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-28710475

RESUMEN

Highly radioactive cesium-rich microparticles (CsMPs) released from the Fukushima Daiichi Nuclear Power Plant (FDNPP) provide nano-scale chemical fingerprints of the 2011 tragedy. U, Cs, Ba, Rb, K, and Ca isotopic ratios were determined on three CsMPs (3.79-780 Bq) collected within ~10 km from the FDNPP to determine the CsMPs' origin and mechanism of formation. Apart from crystalline Fe-pollucite, CsFeSi2O6 · nH2O, CsMPs are comprised mainly of Zn-Fe-oxide nanoparticles in a SiO2 glass matrix (up to ~30 wt% of Cs and ~1 wt% of U mainly associated with Zn-Fe-oxide). The 235U/238U values in two CsMPs: 0.030 (±0.005) and 0.029 (±0.003), are consistent with that of enriched nuclear fuel. The values are higher than the average burnup estimated by the ORIGEN code and lower than non-irradiated fuel, suggesting non-uniform volatilization of U from melted fuels with different levels of burnup, followed by sorption onto Zn-Fe-oxides. The nano-scale texture and isotopic analyses provide a partial record of the chemical reactions that occurred in the fuel during meltdown. Also, the CsMPs were an important medium of transport for the released radionuclides in a respirable form.


Asunto(s)
Radioisótopos de Cesio/análisis , Accidente Nuclear de Fukushima , Plantas de Energía Nuclear , Monitoreo de Radiación/métodos , Uranio/análisis , Geografía , Vidrio/análisis , Japón , Contaminantes Radiactivos/análisis , Dióxido de Silicio/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...